



# What is the environmental impact of plant protection in European pomefruit orchards?

RA3.3 — Environmental risk and benefit assessment

Jörn Strassemeyer, Peter Horney, Aude Alaphilippe, Claire Lavigne, Toubon JF, Ricci B, Frank Hayer, Gérard Gaillard, Stefan Otto



## **Contents**

## **Objective**

To assess the environmental impact of plant protection in four orchard regions on landscape level

### Risk assessment was conducted with SYNOPS

Risk assessment on field level Risk assessment on landscape level

GIS Database in the orchard regions

**Application of SYNOPS in the orchard regions** 

Results of different scenarios in the three orchard regions





## **SYNOPS**



## **Exposure**

Soil

surface water

non target plants

# **Toxicity**

earthworm

daphnia, algae, fish, lemna

bee





Risk (ETR)= calculated Exposure

**Toxicity** 

model application within ENDURE

#### **SYNOPS (SustainOS)**

region specific worst cases scenarios application calendars from :

orchard system definitions (BS,AS,IS)

#### **SYNOPS-GIS**

field specific GIS-data application calendars form:

field based surveys

orchard system definitions (BS,AS, 18)





# Risk assessment of application strategies

### chronic aquatic risk







# Risk assessment of application strategies

#### chronic aquatic risk



## **Aquatic risk**

 $\begin{aligned} & \text{ETR}_{\text{aquatic}} = \\ & \text{max(ETR}_{\text{algae}}, \text{ETR}_{\text{daphnia}}, \text{ETR}_{\text{fish}}, \text{ETR}_{\text{lemna}}) \end{aligned}$ 









## **GIS-based risk assessment with SYNOPS**



SYNOPS calculates the risk potential of all orchards within the considered region.

- → regional approach
  - input data for all fields in the considered region have to be available on field level
  - the calculated field based risk potentials are then analysed or aggregated in the spatial dimension
- → geographical databases + GIS procedures







## **GIS-based risk assessment with SYNOPS**



# available spatial databases

| country<br>region                   | land cover data and surface water                                                                   | slope                                         | climate                                    | soil             |
|-------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------|------------------|
| Germany Lake Constance              | ATKIS<br>area=10248 ha<br>orchards=4232                                                             | digital elevation<br>model (25m)              | regional climate<br>data (5 stations)      | digital soil map |
| Switzerland  Lake Constance         | Swisstopo<br>area=6370 ha<br>orchards=6230                                                          | digital elevation model (2m)                  | regional climate data (1 station)          |                  |
| France<br>Rhone Valley              | digitalized from areal photos<br>area=1871 ha<br>orchards=3157                                      | Hair database<br>(10*10 km<br>average values) | regional climate<br>data (1 station)       |                  |
| Italy Emilia-Romagna (part Ferrara) | 3 <sup>rd</sup> level of Corine Land cover classification area= 10135 ha orchards (artificial)=5561 | digital elevation<br>model (10m)              | regional climate<br>data<br>(interpolated) | digital soil map |
| Netherlands<br>Kromme Rijn          | No GIS data                                                                                         | -                                             | -                                          |                  |
| Spain<br>Lleida                     | No GIS data                                                                                         | -                                             | -                                          |                  |



# available pesticide use data

| country / region               | Survey                                            | years              | number of application schedules per year | defined<br>systems (RA. 2.5) |
|--------------------------------|---------------------------------------------------|--------------------|------------------------------------------|------------------------------|
| Germany  Lake Constance        | NEPTUN<br>field based                             | 01, 04, 07,        | >50                                      | BS, AS1, AS2, IS             |
| Switzerland  Lake Constance    | field based<br>(not available for<br>publication) | 01, 02, 03, 04, 05 | >250                                     | BS, AS1, AS2, IS             |
| France<br><b>Rhone Valley</b>  | "zone 13"<br>field based                          | 06, 07, 08         | >70                                      | BS, AS1, AS2, IS             |
| Italy<br><b>Emilia-Romagna</b> | recommendations from advisor                      | 09                 | >15                                      | -                            |



## **Orchard regions**





## Rating of chronic aquatic risk

| Four risk categories for |
|--------------------------|
| SYNOPS results           |

chronic risk

very low risk

ETR<0.1

low risk

0.1< ETR<1

medium risk

1< ETR<10

high risk

ETR >10



## chronic aquatic risk asessed with SYNOPS



# Spatial aggregation of the risk potential





## aquatic risk on landscape level:

impact of product specific drift mitigation requirements

- Region: Lake Constance, Germany
- Pesticide applications from field based surveys (NEPTUN) in the year 2001, 2004, 2007
- random distribution of the application calendars (n= 42-112)

Scenario 1: No (0%) producer follows the

product specific drift mitigation requirements

Scenario 2 All (100%) producers follow the





## aquatic risk potential: Lake Constance



## aquatic risk potential: Lake Constance



## aquatic risk potential: Lake Constance





## aquatic risk on landscape level:

application calendars form defined orchard systems

- Regions: Lake Constance-GER, Lake Constance-CH, Rhone valley
- Pesticide applications from orchard system definitions
   BS, AS-1, AS-2
- random distribution of the application calendars of each system (n= 4-10)
- random distribution of the defined drift mitigation measures

Scenario 1: Baseline System (BS) is applied on all orchards (100%)

Scenario 2: Advanced System 1 (AS-1) is applied on all orchards (100%)

Scenario 3: Advanced System 2 (AS-2) is applied on all orchards (100%)



## aquatic risk on landscape level:

definition of drift mitigation measures for orchard systems

hail nets 50% reduction



hedges
50% reduction



Sprayers 50, 75 or 90% reduction



**Lake Constance** 

Germany

|   |     | 0% drift  | 50% drift | 75% drift | 90% drift |
|---|-----|-----------|-----------|-----------|-----------|
| _ |     | reduction | reduction | reduction | reduction |
|   | BS  | 18%       | 25%       | 43%       | 15%       |
|   | AS1 | 0%        | 9%        | 32%       | 59%       |
|   | AS2 | 0%        | 0%        | 11%       | 89%       |
| - |     |           |           |           |           |

**Lake Constance** 

Switzerland

| ١      |     | 0% drift  | 50% drift | 75% drift | 90% drift |
|--------|-----|-----------|-----------|-----------|-----------|
| ·<br>I |     | reduction | reduction | reduction | reduction |
|        | BS  | 50%       | 50%       | 0%        | 0%        |
|        | AS1 | 0%        | 25%       | 50%       | 25%       |
|        | AS2 | 0%        | 0%        | 25%       | 75%       |
|        |     |           |           |           |           |

**Rhone Valley** 

France

|     | 0% drift  | 50% drift | 75% drift | 90% drift |
|-----|-----------|-----------|-----------|-----------|
|     | reduction | reduction | reduction | reduction |
| BS  | 54%       | 42%       | 4%        | 0%        |
| AS1 | 0%        | 9%        | 46%       | 45%       |
| AS2 | 0%        | 0%        | 18%       | 82%       |

# aquatic risk potential: Lake Constance (GER)

application calendars form orchard system definitions











|     | Reduction compared to BS       |            |
|-----|--------------------------------|------------|
|     | aquatic risk, fraction of area |            |
|     | 90th percentile                | with ETR>1 |
| AS1 | -88.7%                         | -87.8%     |
| AS2 | -95.0%                         | -89.5%     |





## aquatic risk potential: Lake Constance (CH)

application calendars form orchard system definitions







#### frequency distribution of risk indices



|     | Reduction compared to BS       |            |
|-----|--------------------------------|------------|
|     | aquatic risk, fraction of area |            |
|     | 90th percentile                | with ETR>1 |
| AS1 | -99.3%                         | -100%      |
| AS2 | -99.4%                         | -100%      |





# aquatic risk potential: Rhone Valley (FR)

application calendars form orchard system definitions







#### frequency distribution of risk indices



|     | Reduction compared to BS       |            |  |
|-----|--------------------------------|------------|--|
|     | aquatic risk, fraction of area |            |  |
|     | 90th percentile                | with ETR>1 |  |
| AS1 | -87.5%                         | -21.1%     |  |
| AS2 | -99.9%                         | -100.0%    |  |





## aquatic risk on landscape level:

successive introduction of the defined orchard systems

- Regions: Lake Constance-GER, Lake Constance-GER, Rhone valley
- The 100% scenarios are not realistic.
- A mixture of available scenarios depending on the availability and acceptance of the orchard systems is more realistic.
- random distribution of the defined systems according to the following scenarios:

**Scenario 1** in 0-2 years: 70% BS, 20% AS-1 and 10% AS-2

Scenario 2 in 2-5 years: 50% BS, 30% AS-1 and 20% AS-2

**Scenario 3** in 5-10 years: 20% BS, 50% AS-1 and 30% AS-2



## aquatic risk potential: Lake Constance (GER)

successive introduction of the defined orchard systems







#### frequency distribution of risk indices



|            | Reduction compared to BS       |            |  |
|------------|--------------------------------|------------|--|
|            | aquatic risk, fraction of area |            |  |
|            | 90th percentile                | with ETR>1 |  |
| Scenario 1 | -36.98%                        | -27.78%    |  |
| Scenario 2 | -48.69%                        | -44.43%    |  |
| Scenario 3 | -79.69%                        | -70.81%    |  |



aquatic risk, 90th percentile



## aquatic risk potential: Lake Constance (CH)

successive introduction of the defined orchard systems







#### frequency distribution of risk indices



|            | Reduction compared to BS       |            |  |
|------------|--------------------------------|------------|--|
|            | aquatic risk, fraction of area |            |  |
|            | 90th percentile                | with ETR>1 |  |
| Scenario 1 | -59.38%                        | -28.66%    |  |
| Scenario 2 | -78.27%                        | -49.07%    |  |
| Scenario 3 | -98.37%                        | -82.09%    |  |





## aquatic risk potential: Rhone Valley (FR)

successive introduction of the defined orchard systems







#### frequency distribution of risk indices



|            | Reduction compared to BS       |            |  |
|------------|--------------------------------|------------|--|
|            | aquatic risk, fraction of area |            |  |
|            | 90th percentile                | with ETR>1 |  |
| Scenario 1 | -49.99%                        | -15.38%    |  |
| Scenario 2 | -52.92%                        | -26.43%    |  |
| Scenario 3 | -86.38%                        | -39.61%    |  |





## Summary

- A detailed spatial risk analysis can be conducted with SYNOPS-GIS
- The best case of data availability are geo-referenced environmental databases on field level in combination with field based information on pesticide use
- By using successively conducted surveys for pesticide use it is possible to show temporal changes in the regional risk
- The regional impact of drift mitigation measures can be evaluated by comparing different scenarios
- Drift mitigation measures have an substantial impact on the aquatic risk
- Both Advanced Systems AS1and AS2 show a clear improvement of the environmental risk compared to the Baseline System with a reduction of >87% for AS1 and >95% for AS2.
- Within a timeframe of 5-10 years (scenario 3) a reduction of the environmental risk by 70-89% is realistic. The orchard area with medium and high risk is reduced by 40-80%.







FOOD
QUALITY
AND
SAFETY

